A Recurrent Neural Network Recogniser for Online Recognition of Handwritten Symbols
نویسندگان
چکیده
This paper presents an innovative hybrid approach for online recognition of handwritten symbols. This approach is composed of two main techniques. The first technique, based on fuzzy logic, deals with feature extraction from a handwritten stroke and the second technique, a recurrent neural network, uses the features as an input to recognise the symbol. In this paper we mainly focuss our study on the second technique. We proposed a new recurrent neural network architecture associated with an efficient learning algorithm. We describe the network and explain the relationship between the network and the Markov chains. Finally, we implemented the approach and tested it using benchmark datasets extracted from the Unipen database.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملAn Efficient Hybrid Approach for Online Recognition of Handwritten Symbols
This paper presents an innovative hybrid approach for online recognition of handwritten symbols. The approach is composed of two main techniques. Firstly, fuzzy rules are used to extract a meaningful set of features from a handwritten symbol, and secondly a recurrent neural network uses the feature set as input to recognise the symbol. The extracted feature set is a set of basic shapes capturin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005